我们为深度残留网络(RESNETS)提出了一种全球收敛的多级训练方法。设计的方法可以看作是递归多级信任区域(RMTR)方法的新型变体,该方法通过在训练过程中自适应调节迷你批量,在混合(随机确定性)设置中运行。多级层次结构和传输运算符是通过利用动力学系统的观点来构建的,该观点通过重新连接来解释远期传播作为对初始值问题的正向Euler离散化。与传统的培训方法相反,我们的新型RMTR方法还通过有限的内存SR1方法结合了有关多级层次结构各个级别的曲率信息。使用分类和回归领域的示例,对我们的多级训练方法的总体性能和收敛属性进行了数值研究。
translated by 谷歌翻译
由于长期机器人操作中的地图尺寸的增长,现有的同时定位和映射方法的可伸缩性受到限制。此外,处理此类地图进行本地化和计划任务会导致船上所需的计算资源增加。为了解决长期操作中记忆消耗的问题,我们开发了一种新型的实时SLAM算法,即Meslam,该算法基于神经场隐含的地图表示。它结合了提出的全球映射策略,包括神经网络分布和区域跟踪,以及外部进程系统。结果,该算法能够有效地训练多个代表不同地图区域的网络,并在大规模环境中准确地训练姿势。实验结果表明,所提出的方法的准确性与最新方法(平均为6.6 cm的TUM RGB-D序列)相当,并且优于基线,IMAP $^*$。此外,拟议的SLAM方法提供了最紧凑的地图,而没有细节变形(1.9 MB(1.9 MB)在最先进的大满贯方法中储存57 m $^3 $)。
translated by 谷歌翻译
在拟议的研究中,我们描述了一种方法,可通过在摄像机和猛击管道之间实现中间层来提高具有多个相机的移动机器人的视觉猛击算法和有限的计算能力的方法。在此层中,图像是使用基于RESNET18的神经网络对机器人定位的适用性进行分类的。该网络接受了在Skolkovo科学技术学院(Skoltech)校园收集的六摄像机数据集培训。对于训练,我们使用与随后的同一相机(“良好”关键点或功能)成功匹配的图像和球形功能。结果表明,网络能够准确地确定Orb-Slam2的最佳图像,并在SLAM管道中实施拟议的方法可以显着增加SLAM算法可以定位的图像数量,并提高其整体鲁棒性,并提高其整体鲁棒性。视觉大满贯。与使用Orb提取器和在CPU操作时使用Orb提取器和功能匹配器相比,操作时间的实验表明,在GPU上运行时,提出的方法的速度至少要快6倍。该网络评估在识别具有大量“良好” ORB关键的图像时至少显示了90%的精度。提出的方法的使用允许通过从具有贫困流的相机切换来保持整个数据集的大量功能。
translated by 谷歌翻译
在这项研究中,我们提出了一种新型的视觉定位方法,以根据RGB摄像机的可视数据准确估计机器人在3D激光镜头内的六个自由度(6-DOF)姿势。使用基于先进的激光雷达的同时定位和映射(SLAM)算法,可获得3D地图,能够收集精确的稀疏图。将从相机图像中提取的功能与3D地图的点进行了比较,然后解决了几何优化问题,以实现精确的视觉定位。我们的方法允许使用配备昂贵激光雷达的侦察兵机器人一次 - 用于映射环境,并且仅使用RGB摄像头的多个操作机器人 - 执行任务任务,其本地化精度高于常见的基于相机的解决方案。该方法在Skolkovo科学技术研究所(Skoltech)收集的自定义数据集上进行了测试。在评估本地化准确性的过程中,我们设法达到了厘米级的准确性;中间翻译误差高达1.3厘米。仅使用相机实现的确切定位使使用自动移动机器人可以解决需要高度本地化精度的最复杂的任务。
translated by 谷歌翻译